

Technical Report

C/24386/T01

Project

The Laboratory Measurement of
Improvement of Impact Sound Insulation of a
Solid Floor Covering

Prepared for

Tier Global (UK) Ltd

By

Allen Smalls

Published

15 May 2019

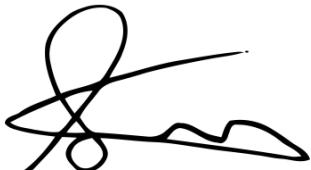
Quality Assurance

Project Title	The Laboratory Measurement of Improvement of Impact Sound Insulation of a Solid Floor Covering
Document Title	Technical Report
Client	Tier Global (UK) Ltd
Client Address	St Albans Road Gloucestershire GL2 5FW
Author	Allen Smalls
Checker	Richard Critchlow
Report Number	C/24386/T01

Report Revision History

Revision	Date	Comments

Test Report No: C/24386/T01**Page 3 of 15****Date: 15/05/2019**


This report shall not be reproduced,
except in full, without written approval of
SRL Technical Services Limited

Summary

Tests have been done in SRL's Laboratory at Holbrook House, Sudbury, Suffolk, to determine the improvement of impact sound insulation of a solid floor covering in accordance with BS EN ISO 10140-3:2010.

From these measurements the required results have been derived and are presented in both tabular and graphic form in Data Sheet 1.

The results are given in 1/3rd octave bands over the frequency range 100Hz to 5kHz, which is beyond that required by the test standard. Measurements outside the standard frequency range are not UKAS accredited.

Allen Smalls
Quality Manager
For and on behalf of
SRL Technical Services Limited
Tel: 01787 247595
Email: asmalls@srltsl.com

Richard Critchlow
Technical Manager

Contents

Summary.....	3
1.0 Details of Measurements.....	5
2.0 Description of Test.....	7
3.0 Results.....	8
Drawing I – Example of Floor Test Setup.....	9
Data Sheet I	10
Appendix A - Test Procedure.....	11
Appendix B - Measurement Uncertainty.....	14

1.0 Details of Measurements

1.1 Location

Sound Research Laboratories

Holbrook House

Little Waldingfield

Sudbury

Suffolk

CO10 0TF

1.2 Test Date

13 May 2019

1.3 Tester

Allen Smalls of SRL Technical Services Limited

1.4 Instrumentation and Apparatus Used

Make	Description	Type
Abtronix	Microphone Multiplexer	
EDI	Microphone Power Supply Unit	
Norwegian Electronics	Tapping Machine	211

	Real Time Analyser	830
Brüel & Kjaer	Windshields	UA0237
	Pre Amplifiers	2669C
	Microphone Calibrator	4231
Larson Davis	12mm Condenser Microphone	2560, 377A60
Oregon Scientific	Temperature & Humidity & Probe	THGR810
TOA	Graphic Equalizer	E-1231
QSC Audio	Power Amplifier	RMX 1450
G.R.A.S	Pre Amplifier	26AK

1.5 References

BS EN ISO 717-2:2013	Rating of sound insulation in buildings and of building elements Impact Sound Insulation.
BS EN ISO 10140-3:2010	Laboratory measurement of sound insulation of building elements – Part 3: Measurement of impact sound insulation.

2.0 Description of Test

2.1 Description of Sample

Tests were completed on a solid floor covering with nominal dimensions of 3.4m x 3.1m. The sample had a thicknesses of 20mm. See Drawing 1 and Section 3.0 Results for more details.

Sampling plan: Enough for testing only

Sample condition: New

Details supplied by: Tier Global (UK) Ltd

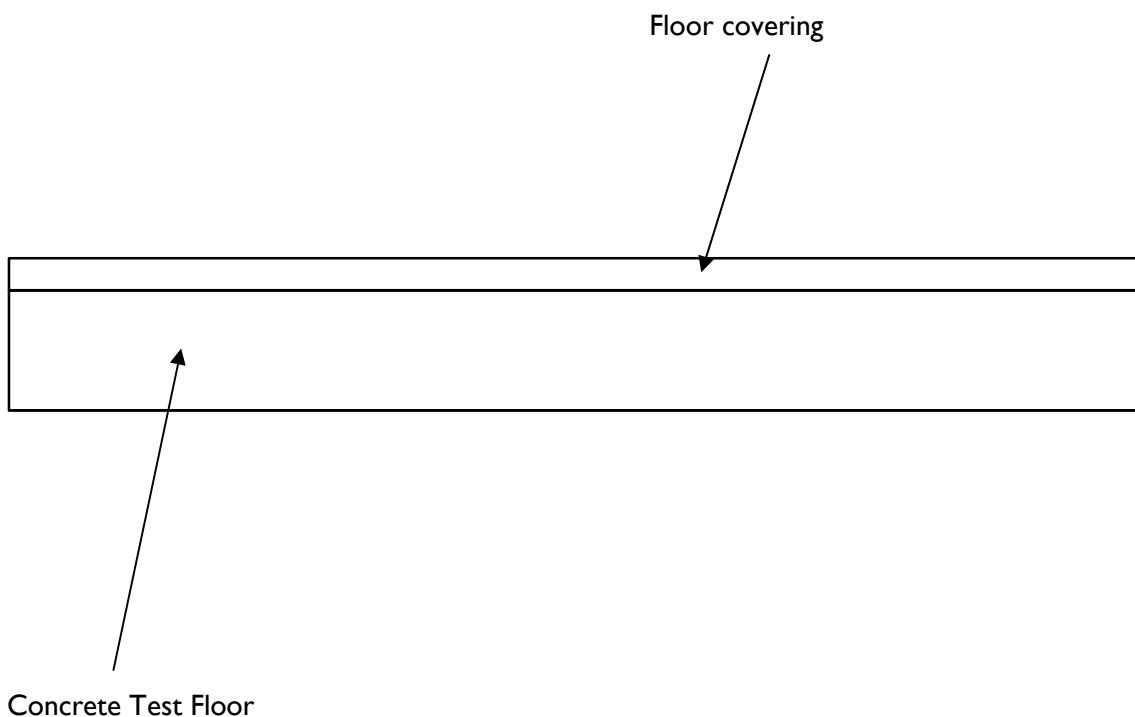
Sample installed by: Tier Global (UK) Ltd

2.2 Sample Delivery date

10 May 2019

2.3 Test Procedures

The sample was mounted/located and tested in accordance with the relevant standard. The method and procedure is described in Appendix A. The measurement uncertainty is given in Appendix B.


3.0 Results

The results of the measurements and subsequent analysis are given in Data Sheet 1 and summarised below.

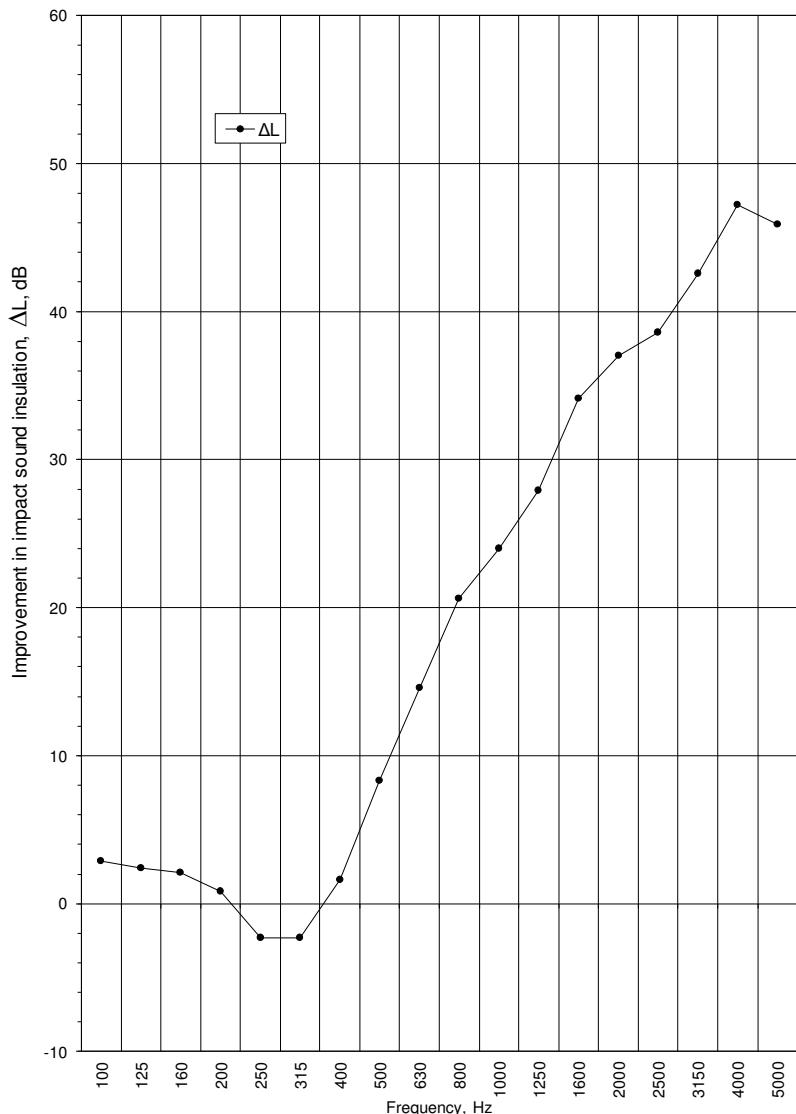
Results relate only to the items received and tested.

SRL Test No.	Description in Brief	ΔL_w dB
A1	Acoustix 7210c/5	16

Drawing 1 – Example of Floor Test Setup

Data Sheet I

Improvement in impact sound insulation measured according to BS EN ISO 10140-3 : 2010
Laboratory measurements of the improvement of impact sound insulation by floor coverings on a heavyweight standard floor


Test Number: AI
 Test Date: 13/05/2019
 Client: Tier Global (UK) Ltd
 Method of mounting: Adhesive
 Receiving room volume: 300m³
 Product identification: Acoustix 7210c/5

Sample mass: 14.3 kg/m²
 Thickness: 20.3 mm
 Length: 3.42 m
 Width: 3.06 m

Test Room: Source Receiving
 Air temperature: 20.4 13.4 °C
 Air Humidity: 46 57 %
 Air Pressure: 1030 mbar

The sample did not suffer
visible damage during the test

Freq f Hz	$L_{n,0}$ Third octave dB	ΔL Third octave dB
100	65.1	2.9
125	67.7	2.4
160	69.0	2.1
200	69.1	0.8
250	70.2	-2.3
315	70.7	-2.3
400	71.6	1.6
500	72.3	8.3
630	72.5	14.6
800	72.6	20.6
1000	73.6	24.0
1250	74.8	27.9
1600	76.3	34.1
2000	77.0	37.0
2500	77.5	38.6
3150	77.4	42.6
4000	76.5	47.2
5000	74.1	45.9

$L_{n,0}$: Is the normalised impact sound pressure level of the bare heavyweight test floor.

ΔL : Is the improvement in impact sound insulation resulting from the installation of the test floor covering.

* Denotes results corrected for background

Denotes results at background

Rating according to BS EN ISO 717-2:2013

Results are based on a test made with an artificial source under laboratory conditions.

Weighted reduction of impact sound pressure level of sample and (spectrum adaptation term)

$\Delta L_w (C_{ld}) = 16 (-11) \text{ dB}$

Weighted normalised impact sound pressure level of bare reference floor and (spectrum adaptation term)

$L_{n,r,0,w} (C_{l,r,0}) = 78 (-11) \text{ dB}$

Weighted normalised impact sound pressure level of reference floor with sample and (spectrum adaptation term)

$L_{n,r,w} (C_{l,r}) = 62 (0) \text{ dB}$

Appendix A - Test Procedure

Measurement of The Improvement of Impact Sound Insulation by a Floor Covering on a Reference floor in Accordance With BS EN ISO 10140-3: 2010 & BS EN ISO 10140-1: 2010 (Appendix H) - Category II & III (Large Samples) – TP32

In the laboratory, impact sound reduction is determined from the difference a sample floor covering makes to the sound pressure levels generated by a standard impact machine. The impact machine, known as a tapping machine, is operated standing first on a concrete slab and then on the test sample installed on that slab. The test floor for the installation of the test samples measures 3.7m by 3.5m and is 160mm thick. The test sample is installed on top of the roof of a reverberation room, which is acoustically “live”, and the sound pressure levels are measured in that room. The test is done under conditions which restrict the transmission of sound other than directly through the sample and test slab. The measured sound pressure levels are corrected for the amount of sound absorption in the reverberation room.

The reverberation room, which has a volume of 300 cubic metres, is constructed from 215mm brick which is internally plastered with a reinforced concrete roof and floor. The room is isolated from the surrounding structure by resilient mountings and seals, ensuring good acoustic isolation. Reverberation time measurements are done to calibrate the reverberation room.

With the tapping machine operating on the bare concrete roof slab, the resulting sound pressure levels in the room are sampled using a spaced array of microphones connected to a real time analyser. The signal is filtered into one-third octave bandwidths, integrated and averaged. Six microphones are used with minimum separating distances as follows:

- 0.7m between microphone positions
- 0.7m between any microphone position and room boundaries or diffusers
- 1.0m between any microphone position and the upper floor being excited by the tapping machine

The procedure is repeated with the tapping machine at three further positions. The individual values for the different positions are arithmetically averaged to give the impact sound pressure level ($L_{i,0}$). This is corrected to a reference room absorption, referred to as normalising, to give the normalised impact sound pressure levels ($L_{n,0}$) for the bare concrete slab.

$$L_{n,0} = L_{i,0} + 10 \log \frac{A}{A_{ref}} \text{ in decibels}$$

Where A is the actual absorption of the test chamber A_{ref} is the reference room absorption of 10m².

The test sample, which is at least 10m² in area, is placed on top of the concrete slab. The whole procedure is then repeated, with the tapping machine at four different locations, to obtain the normalised impact sound pressure levels with covering (L_i) and the corresponding normalised levels (L_n).

The reduction of impact sound pressure level (improvement of impact sound insulation) ΔL , for a given frequency band is determined as follows:

$$\Delta L = L_{n,0} - L_n$$

The Weighted Impact Sound Improvement Index ΔL_w , is a single figure rating of impact sound reduction and is calculated in accordance with BS EN ISO 717-2:2013.

The impact sound pressure levels for the test floor with a test sample depend to small extent on the particular test floor itself. To standardise these levels they are adjusted by calculation to what they would be if the bare concrete slab were replaced by a reference floor. The impact sound pressure levels that would be produced on the bare reference floor (L_{n,0}) are defined in BS EN ISO 717-2:2013. Using these, the impact sound pressure levels for the sample on the reference floor (L_{n,r}) and the corresponding weighted level (L_{n,w,r}) are calculated in accordance with the same standard.

Optional Procedure for Category II Samples

The assembled floor covering may be tested under load. To simulate normal furnishing, weights are uniformly distributed over the sample floor, at least one for each square meter of sample area. The average load over the sample is between 20 and 25kg/m². The thickness of the floor sample under load is noted.

Test Report No: C/24386/T01**Page 13 of 15****Date: 15/05/2019**

This report shall not be reproduced,
except in full, without written approval of
SRL Technical Services Limited

Measurements under load may be done as an alternative or in addition to measurements on the unloaded sample.

Appendix B - Measurement Uncertainty

Measurement Uncertainty - BS EN ISO 10140-3: 2010; BS EN ISO 10140-1:2010 (Appendix H) – TP32

The following values of uncertainty are based on a standard uncertainty multiplied by a coverage factor of $k = 2$, which provides a level of confidence of approximately 95%.

Frequency, Hz	Uncertainty, \pm dB
100	1.2
125	1.2
160	1.2
200	1.2
250	1.2
315	0.8
400	0.8
500	0.8
630	0.8
800	1.2
1000	1.2
1250	1.2
1600	1.5
2000	2.2
2500	2.2
3150	2.2

Sudbury Consultancy

Holbrook House
Little Waldingfield
Sudbury
Suffolk
CO10 0TF
Tel: +44 (0)1787 247595

Manchester Consultancy

Suite 1.9, Canada House
Chepstow Street
Manchester
M1 5FW
Tel: +44 (0)161 929 5585

London Consultancy

07-106
8 Devonshire Square
London
EC2M 4PL
Tel: +44 (0)207 251 3585

Birmingham Consultancy

Cornwall Buildings
45 Newhall Street
Birmingham
B3 3QR
Tel: +44 (0)121 270 6680

South Africa Consultancy

102 Heritage House
20 Dreyer Street
Claremont
Cape Town
7708
South Africa
Tel: +27 (0)21 205 9201

Laboratory

Holbrook House
The Street
Sudbury
Suffolk
CO10 0TF
Tel: +44 (0)1787 247595

Website: www.srltsl.com
e-mail: srl@srltsl.com

SRL offers services in:

Acoustics
Air Quality
BREEAM
Laboratory and Site Testing

Registered Name and Address:

SRL Technical Services Limited
Holbrook House
Little Waldingfield
Sudbury
Suffolk
CO10 0TF

Registered Number: 907694 England

